Design strategy and process optimization for reactors with continuous transport of an immobilized enzyme
نویسنده
چکیده
In order to operate a process which uses immobilized enzymes at constant conversion and constant capacity, the refreshment of the enzyme must be continuous. In this paper, two reactor types with continuous refreshment of the biocatalyst are discussed: the stirred tank and the multistage fluidized bed. A method is presented for dimensioning a reactor in such a way that the costs for the conversion of substrate to product are minimized. These costs are calculated as the sum of the biocatalyst consumption and overall reactor costs. In contrast with the stirred-tank reactor, the multistage fluidized bed can be operated at a non-uniform temperature. For the glucose isomerase process, an optimal temperature gradient results in a small reduction in the biocatalyst consumption (+ 5%). It is concluded that, in general, a temperature gradient will only favour the economy of processes with relatively expensive biocatalysta. Compared with conventional reactor types, such as the continuous stirred-tank reactor and the fixedbed reactor, the multistage fluidized-bed reactor can improve the economy of an enzyme-catalysed reaction signitkantly.
منابع مشابه
Bioaffinity Based Immobilization of Almond (Amygdalus communis) b-galactosidase on Con A-layered Calcium Alginate-cellulose Beads: Its Application in Lactose Hydrolysis in Batch and Continuous Mode
In this study, immobilization of partially purified almond (Amygdalus communis) β-galactosidase on Con A layered calcium alginate-cellulose beads was investigated. Immobilized β-galactosidase retained 72% of theinitial activity after crosslinking by glutaraldehyde. Both soluble and immobilized enzyme exhibited the samepH and temperature optima at pH 5.5 and 50ºC, respectively. Howev...
متن کاملOptimization of Biodiesel Production Using Immobilized Candida Rugosa Lipase on Magnetic Fe3O4-Silica Aerogel
Hydrophobic magnetic silica aerogel was used as a support to immobilize Candida rugosa lipase by adsorption method. Physical and chemical properties of the support and immobilized lipase were determined by Field Emission Scanning Electron Microscope (FESEM), Brunauer–Emmett–Teller (BET) analysis and Fourier Transform InfraRed (FT-IR) spectroscopy and the results showed that the lipase was s...
متن کاملAnalytical Solution of Steady State Substrate Concentration of an Immobilized Enzyme Kinetics by Laplace Transform Homotopy Perturbation Method
The nonlinear dynamical system modeling the immobilized enzyme kinetics with Michaelis-Menten mechanism for an irreversible reaction without external mass transfer resistance is considered. Laplace transform homotopy perturbation method is used to obtain the approximate solution of the governing nonlinear differential equation, which consists in determining the series solution convergent to the...
متن کاملContinuous-Flow Biochemical Reactors: Biocatalysis, Bioconversion, and Bioanalytical Applications Utilizing Immobilized Microfluidic Enzyme Reactors
AQ3 The utilization of continuous-flow biochemical reactors, including biocatalysis, biotransformation, and biochemical interaction based flow-analytical systems, and enzyme reactors are recently the focus of attention to produce fine biochemicals and also show great potential in bioanalytical applications. Continuous-flow biochemical processes implemented in microstructured reactors enable sho...
متن کاملA Two Level Approximation Technique for Structural Optimization
This work presents a method for optimum design of structures, where the design variables can he considered as Continuous or discrete. The variables are chosen as sizing variables as well as coordinates of joints. The main idea is to reduce the number of structural analyses and the overal cost of optimization. In each design cycle, first the structural response quantities such as forces, displac...
متن کامل